pyagree Documentation

Release 0.0.4

Alberto Casagrande

Aug 28, 2020

CONTENTS

1	Installing pyagree	3	
2	Using pyagree 2.1 Importing pyagree Functions 2.2 Working Examples	5 5 5	
3	Agreement Measures3.1General Notions3.2Bennett, Alpert and Goldstein's S3.3Bangdiwala's B3.4Cohen's Kappa3.5Scott's Pi3.6Yule's Y3.7Fleiss's Kappa3.8Information Agreement3.9References	 9 9 9 10 10 10 11 12 	
4	API 4.1 pyagree API	13 13	
5	Indices and tables	15	
Bi	Bibliography		
In	Index		

pyagree is a simple Python module containing some of the main inter-rater agreement measures.

ONE

INSTALLING PYAGREE

There are two main ways to install *pyagree*. The first one requires to clone pyagree's repository from GitHub by using the following command:

git clone https://github.com/albertocasagrande/pyagree.git

Once the command has fully been executed, the repository directory must be entered and the package can be installed by issuing as superuser (administrator or root) the following commands:

```
cd pyagree
python setup.py install
```

The second method to install *pyagree* is easier, but requires the tool *pip* (see pypi) and it may install a non-bleeding edge version of the package. As superuser, issue the command:

pip install pyagree

TWO

USING PYAGREE

2.1 Importing pyagree Functions

In order to use *pyagree*, it is sufficient to import it, for instance, by using the statement:

import pyagree

After that, all the functions reported in the API can be invoked as follows:

```
pyagree.<function name>(<parameter1>, ...)
```

Alternatively, the desired functions can be individually imported and avoiding the package name prefix as in:

```
from pyagree import <function name>
```

<function name>(<parameter1>, ...)

2.2 Working Examples

For instance:

```
>>> from pyagree import bangdiwala_b, cohen_kappa
>>> A = [[10, 1],
... [ 5, 10]]
>>> bangdiwala_b(A)
0.6060606060606061
>>> cohen_kappa(A)
0.5491329479768786
```

evaluates both Bangdiwala's B and Cohen's κ of the agreement matrix

$$A = \left(\begin{array}{rrr} 10 & 1\\ 5 & 10 \end{array}\right)$$

and print them in output.

2.2.1 NumPy Support

All the pyagree functions natively support both standard "list-of-list" representation of matrices and NumPy matrices.

```
>>> import numpy
>>> from pyagree import scott_pi
>>> A = [[0,1,2],
... [3,4,5],
... [6,7,8]]
>>> B = numpy.matrix(A)
>>> scott_pi(A)
-0.09090909090909094
>>> scott_pi(B)
-0.09090909090909094
```

2.2.2 Matrix Sizes and Exceptions

Whenever, the matrix size is not supported either by the agreement measure or by the corresponding *pyagree* function, an opportune *ValueError* is raised.

```
>>> from pyagree import cohen_kappa, yule_y
>>> A = [[0,1]],
        [2,3],
. . .
        [4,5]]
. . .
>>> B = [[0,1,2],
        [3,4,5],
. . .
        [6,7,8]]
. . .
>>> C = [[0,1],
        [2,3]]
• • •
>>> cohen_kappa(A)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python3.8/site-packages/pyagree/standard.py", line 81, in cohen_kappa
   test_agreement_matrix(A)
 File "/usr/lib/python3.8/site-packages/pyagree/common.py", line 29, in test_
→agreement_matrix
   raise ValueError("Non-squared matrix")
ValueError: Non-squared matrix
>>> cohen_kappa(B)
-0.0666666666666666
>>> yule_y(B)
```

(continues on next page)

(continued from previous page)

```
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/lib/python3.8/site-packages/pyagree/standard.py", line 149, in yule_y
    raise ValueError("The agreement matrix must be a 2x2-matrix")
ValueError: The agreement matrix must be a 2x2-matrix
>>> yule_y(C)
-1.0
```

THREE

AGREEMENT MEASURES

3.1 General Notions

Inter-rater agreement (also known as inter-rater reliability) is a measure of consensus among n raters in the classification of N objects in a k different categories.

In the general case, the rater evaluations can be represented by the **reliability data matrix**: a $n \times N$ -matrix R such that R[i, j] stores the category selected by the *i*-th rater for the *j*-th object.

A more succint representation is provided by a $N \times k$ -matrix C whose elements C[i, j] account how many raters evaluated the *i*-th object as belonging to the *j*-th category. This matrix is the **classification matrix**.

Whenever the numer of raters is 2, i.e., n = 2, the rater evaluations can be represented by the **agreement matrix**: a $k \times k$ -matrix A such that A[i, j] stores the number of objects that are classified at the same time as belonging to the *i*-th category by the first rater and to the *j*-th category by the second rater.

3.2 Bennett, Alpert and Goldstein's S

Bennett, Alpert and Goldstein's S is an inter-rater agreement measure on nominal scale (see [BAG54] and [War12]). It is defined as:

$$S \stackrel{\text{def}}{=} \frac{k * P_0 - 1}{k - 1}$$

where P_0 is the probability of agreement among the raters and k is the number of different categories in the classification.

3.3 Bangdiwala's B

Bangdiwala's B is an inter-rater agreement measure on nominal scale (see [MB97]). It is defined as:

$$B \stackrel{\text{def}}{=} \frac{\sum_{i} A[i,i]}{\sum_{i} A_{i\cdot} * A_{\cdot i}}$$

where A_i and A_i are the sums of the elements in the *i*-th row and *i*-th column of the matrix A, respectively.

3.4 Cohen's Kappa

Cohen's κ is an inter-rater agreement measure on nominal scale (see [Coh60]). It is defined as:

$$\kappa \stackrel{\text{def}}{=} \frac{P_0 - P_e}{1 - P_e}$$

where P_0 is the probability of agreement among the raters and P_e is the agreement probability by chance.

3.5 Scott's Pi

Scott's π is an inter-rater agreement measure on nominal scale (see [Sco55]). Similarly to Cohen's κ , it is defined as:

$$\pi \stackrel{\text{def}}{=} \frac{P_0 - P_e}{1 - P_e}$$

where P_0 is the probability of agreement among the raters (as in Cohen's κ) and P_e is the sum of the squared joint proportions (whereas it is the sum of the squared geometric means of marginal proportions in Cohen's κ). In particular, the *joint proportions* are the arithmetic means of the marginal proportions.

3.6 Yule's Y

Yule's Y (see [Yul12]), sometime called *coefficient of colligation*, measures the relation between two binary random variables (i.e., it can be computed exclusively on 2×2 agreement matrices). It is defined as:

$$Y \stackrel{\text{def}}{=} \frac{\sqrt{\text{OR}} - 1}{\sqrt{\text{OR}} + 1}$$

where OR is the *odds ratio* (e.g., see here):

$$OR \stackrel{\text{def}}{=} \frac{A[0,0] * A[1,1]}{A[1,0] * A[0,1]}.$$

3.7 Fleiss's Kappa

Fleiss's κ (see [Fle71]) is a multi-rater generalization of *Scott's Pi*.

If the classifications are represented in a classification matrix (see *General Notions*), the ratio of classifications assigned to class *j* is:

$$p_j \stackrel{\text{def}}{=} \frac{1}{N*n} \sum_{i=1}^N C[i,j]$$

and their square sum is:

$$\bar{P}_e \stackrel{\text{def}}{=} \sum_{j=1}^k p_j.$$

Instead, the ratio between the pairs of raters which agree on the *i*-th subject and the overall pairs of raters is:

$$P_i \stackrel{\text{def}}{=} \frac{1}{n * (n-1)} \left(\left(\sum_{j=1}^k C[i,j]^2 \right) - n \right)$$

and its mean is:

$$\bar{P} \stackrel{\text{def}}{=} \frac{1}{N} \sum_{i=1}^{N} P_i.$$

Fleiss's κ is defined as:

$$\kappa \stackrel{\mathrm{def}}{=} \frac{\bar{P} - \bar{P}_e}{1 - \bar{P}_e}$$

3.8 Information Agreement

The *Information Agreement*, (IA), is an inter-rater agreement measure on nominal scale (see [CFG20a]) which gauges the dependence between the classifications of two raters.

The probability distributions for the evaluations of the rater \mathfrak{X} , those of the rater \mathfrak{Y} , and the joint evaluations \mathfrak{XY} on the agreement matrix A are:

$$p_{X_A}(j_0) \stackrel{\text{def}}{=} \frac{\sum_i A[i, j_0]}{\sum_i \sum_j A[i, j]}, \qquad p_{Y_A}(i_0) \stackrel{\text{def}}{=} \frac{\sum_j A[i_0, j]}{\sum_i \sum_j A[i, j]}$$

and

$$p_{X_A Y_A}(i_0, j_0) = \frac{A[i_0, j_0]}{\sum_i \sum_i A[i, j]},$$

respectively. The entropy functions for the random variables X_A , Y_A , and $X_A Y_A$ are:

$$H(X_A) \stackrel{\text{def}}{=} -\sum_{i} p_{X_A}(i) \log_2 p_{X_A}(i), \qquad H(Y_A) \stackrel{\text{def}}{=} -\sum_{j} p_{Y_A}(j) \log_2 p_{Y_A}(j),$$

and

$$H(X_A Y_A) \stackrel{\text{def}}{=} -\sum_i \sum_j p_{X_A Y_A}(i,j) \log_2 p_{X_A Y_A}(i,j).$$

The mutual information between the classification of \mathfrak{X} and \mathfrak{Y} is:

$$I(X_A, Y_A) \stackrel{\text{def}}{=} H(X_A) + H(Y_A) - H(X_A Y_A).$$

The *Information Agreement* of A is the ratio between $I(X_A, Y_A)$ and the minimum among $H(X_A)$ and $H(Y_A)$ as ϵ tends to 0 from the right, i.e.,

$$IA \stackrel{\text{def}}{=} \frac{I(X_A, Y_A)}{\min(H(X_A), H(Y_A))}.$$

3.8.1 Extension-by-Continuity of IA

IA was proven to be effetive in gauging agreement and solves some of the pitfalls of Cohen's κ . However, it is not defined over all the agreement matrices and, in particular, it cannot be directly computed on agreement matrices containing some zeros (see [CFG20b]).

The *extension-by-continuity of Information Agreement*, (IA_C), extends IA's domain so that it can deal with matrices containing some zeros (see [CFG20b]). In order to achieve this goal, the considered agreement matrix A is replaced by the symbolic matrix A_{ϵ} is defined as:

$$A_{\epsilon}[i,j] \stackrel{\text{def}}{=} \begin{cases} A[i,j] & \text{if } A[i,j] \neq 0\\ \epsilon & \text{if } A[i,j] = 0 \end{cases}$$

where ϵ is a real variable with values in the open interval $(0, +\infty)$. On this matrix, mutual information of the variables $X_{A_{\epsilon}}$ and $Y_{A_{\epsilon}}$ and their entropy functions are defined. The *extension-by-continuity of Information Agreement* of A is the limit of the ratio between $I(X_{A_{\epsilon}}, Y_{A_{\epsilon}})$ and the minimum among $H(X_{A_{\epsilon}})$ and $H(Y_{A_{\epsilon}})$ as ϵ tends to 0 from the right, i.e.,

$$IA_C(A) \stackrel{\text{def}}{=} \lim_{\epsilon \to 0^+} \frac{I(X_{A_{\epsilon}}, Y_{A_{\epsilon}})}{\min(H(X_{A_{\epsilon}}), H(Y_{A_{\epsilon}}))}$$

 $IA_C(A)$ was proven to be defined over any non-null agreement matrix having more than one row/column and, if l and m are numbers of non-null columns and non-null rows in A, respectively, then:

$$\mathrm{IA}_{C}(A) = \begin{cases} 1 - \frac{m}{k} & \text{if } H(\overline{X_{A}}) = 0\\ 1 - \frac{l}{k} & \text{if } H(\overline{Y_{A}}) = 0\\ \frac{I(\overline{X_{A}}, \overline{Y_{A}})}{\min(H(\overline{X_{A}}), H(\overline{Y_{A}}))} & \text{otherwise} \end{cases}$$

where $\overline{X_A}$, $\overline{Y_A}$, and $\overline{X_AY_A}$ are three random variables having the same probability distributions of X_A , Y_A , and X_AY_A except for 0-probability events which are removed from their domains (see [CFG20b]).

3.9 References

FOUR

API

4.1 pyagree API

pyagree.bennett_s (agreement_matrix)

Evaluate Bennett, Alpert and Goldstein's ${\cal S}$

Compute the Bennett, Alpert and Goldstein's S of agreement_matrix.

Parameters agreement_matrix (numpy.ndarray) – An *n* × *n*-agreement matrix

Returns The Bennett, Alpert and Goldstein's S of agreement_matrix

Return type float

 $Raises \; \texttt{ValueError}$

pyagree.scott_pi(agreement_matrix)

Evaluate Scott's π

Compute the *Scott's Pi* of agreement_matrix.

Parameters agreement_matrix (numpy.ndarray) – An $n \times n$ -agreement matrix

Returns The Scott's π of agreement_matrix

Return type float

Raises ValueError

pyagree.yule_y (agreement_matrix)
 Evaluate Yule's Y

Compute the Yule's Y of a 2×2 -agreement matrix agreement_matrix.

Parameters agreement_matrix (numpy.ndarray) - A 2 × 2-agreement matrix

Returns The Yule Y of agreement_matrix

Return type float

Raises ValueError

pyagree.bangdiwala_b(agreement_matrix)

Evaluate Bangdiwala's B

Compute the *Bangdiwala's B* of agreement_matrix.

Parameters agreement_matrix (numpy.ndarray) – An *n* × *n*-agreement matrix

Returns The Bangdiwala's *B* of agreement_matrix

Return type float

Raises ValueError

pyagree.cohen_kappa (agreement_matrix)

Evaluate Cohen's κ

Compute Cohen's Kappa of agreement_matrix.

Parameters agreement_matrix (numpy.ndarray) - An *n* × *n*-agreement matrix

Returns The Cohen's κ of agreement_matrix

Return type float

 $Raises \ \texttt{ValueError}$

pyagree.fleiss_kappa (classification_matrix)

Evaluate Fleiss's κ

Compute the Fleiss's Kappa of a classification matrix classification_matrix.

Parameters classification_matrix (class:*numpy.ndarray*) – An N×k-classification matrix

Returns The Fleiss's κ of classification_matrix

Return type float

 $Raises \; \texttt{ValueError}$

pyagree.ia_c (agreement_matrix)

Evaluate extension-by-continuity of Information Agreement

Compute the *Extension-by-Continuity of IA* (IA_C) of agreement_matrix.

Parameters agreement_matrix (numpy.ndarray) - An agreement matrix

Returns The extension-by-continuity of Information Agreement of agreement_matrix

Return type float

Raises ValueError

FIVE

INDICES AND TABLES

• genindex

• search

BIBLIOGRAPHY

- [BAG54] E.M. Bennett, R. Alpert, and A.C. Goldsein. Communications Through Limited-Response Questioning. *Public Opinion Quarterly*, 18(3):303–308, 01 1954. doi:10.1086/266520.
- [CFG20a] Alberto Casagrande, Francesco Fabris, and Rossano Girometti. Beyond Kappa: An Informational Index for Diagnostic Agreement in Dichotomous and Multivalue Ordered-Categorical Ratings. Submitted for the publication, 2020.
- [CFG20b] Alberto Casagrande, Francesco Fabris, and Rossano Girometti. Extending Information Agreement by Continuity. 2020.
- [Coh60] Jacob Cohen. A coefficient of agreement for nominal scales. *Educational and Psychological Measurement*, 20(1):37–46, 1960. doi:10.1177/001316446002000104.
- [Fle71] Joseph L. Fleiss. Measuring nominal scale agreement among many raters. *Psychological Bulletin*, 76(5):378–382, 1971. doi:10.1037/h0031619.
- [MB97] Sergio R. Munoz and Shrikant I. Bangdiwala. Interpretation of Kappa and B statistics measures of agreement. *Journal of Applied Statistics*, 24(1):105–112, 1997. doi:10.1080/02664769723918.
- [Sco55] William A. Scott. Reliability of content analysis: the case of nominal scale coding. *The Public Opinion Quarterly*, 19(3):321–325, 1955. doi:10.1086/266577.
- [War12] Matthijs J. Warrens. The effect of combining categories on bennett, alpert and goldstein's s. *Statistical Methodology*, 9(3):341–352, 2012. doi:10.1016/j.stamet.2011.09.001.
- [Yul12] George Udny Yule. On the methods of measuring association between two attributes. *Journal of the Royal Statistical Society*, 75(6):579–652, 1912. doi:10.2307/2340126.

INDEX

В

bangdiwala_b() (in module pyagree), 13
bennett_s() (in module pyagree), 13

С

cohen_kappa() (in module pyagree), 14

F

fleiss_kappa() (in module pyagree), 14

I

ia_c() (in module pyagree), 14

S

scott_pi() (in module pyagree), 13

Y

yule_y() (in module pyagree), 13